Ebola Worksheet

From Wednesday lecture - But Slower

Mathew Kiang

2/1/2017

Loading [MathJax]/jax/output/HTML-CSS/jax.js

Goals for today

(o over the Ebola handout™

*Again, only providing you with enough code to finish it on your own.

Download the code*

https://git.io/vD3W0

*Don't use the code on Canvas.

3/30

https://git.io/vD3W0

Question 1%

Make an SEIR model that incorporates case fatality
ratio f

*Sort of -- Questions are unnumbered on the
worksheet.

Start with code you already have

SEIR <- function(t, x, parms){
with(as.list(c(parms, x)), {
N <-S + E+ I+ R
dS <- - (beta * k *x S x I) / N
dE <- + (beta x k *x S *x I) / N - (a x E)
dI <- + (a *x E) - (r x I)
dR <- r % I
der <- c(dS, dE, dI, dR)
return(list(der))
)
}

Here is your boilerplate se1r code. Incoporate f, which is a case fatality ratio.
Recall, this is the fraction of infectious who do not recover.

/ 30

Start with code you already have

SEIR <- function(t, x, parms){
with(as.list(c(parms, x)), {
N <-S + E+ I+ R
dS <- - (beta * k *x S x I) / N
dE <- + (beta x k *x S *x I) / N - (a x E)
dI <- + (a *x E) - (r x I)
dR <- r % I
der <- c(dS, dE, dI, dR)
return(list(der))
)
}

Here is your boilerplate se1r code. Incoporate f, which is a case fatality ratio.
Recall, this is the fraction of infectious who do not recover.

e Also, change ato s (o) and r to g (y) to be consistent with the Althaus

/ 30

Start with code you already have

SEIR <- function(t, x, parms){
with(as.list(c(parms, x)), {
N <-S + E+ I+ R
dS <- - (beta * k *x S x I) / N
dE <- + (beta x k *x S *x I) / N - (a x E)
dI <- + (a *x E) - (r x I)
dR <- r % I
der <- c(dS, dE, dI, dR)
return(list(der))
)
}

Here is your boilerplate se1r code. Incoporate f, which is a case fatality ratio.
Recall, this is the fraction of infectious who do not recover.

e Also, change ato s (o) and r to g (y) to be consistent with the Althaus

e We are not going to use b * k, so replace that with g as s

/ 30

Work with a neighbor to make this model

Remember:

renameatos
renamertog

use B instead of b * R

library(deSolve)

dt <- seq(0, 365, 1)
inits <- c(S = 999999,E = 0, I = 1, R = 0)
parms <- c(B = 0.45, g = 1/5.61, s = 1/5.3, f = 0.6)

SEIR_ex <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S + E+ I+ R

dS <- - (B xS x I) / N

dE <- + (B xS xI) / N- (s *x E)
dI <- (s x E) - (g * I)

dR <- (1 - f) » (g * I)

der <- c(dS, dE, dI, dR)

return(list(der))

1)
}

data_out <- as.data.frame(ode(inits, dt, SEIR_ex, parms = parms))

Your code should now look something like this.

o This is almost exactly like our boilerplate code.

7/30

library(deSolve)

dt <- seq(0, 365, 1)
inits <- c(S = 999999,E = 0, I = 1, R = 0)
parms <- c(B = 0.45, g = 1/5.61, s = 1/5.3, f = 0.6)

SEIR_ex <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S + E+ I+ R

dS <- - (B xS x I) / N

dE <- + (B xS xI) / N- (s *x E)
dI <- (s x E) - (g * I)

dR <- (1 - f) » (g * I)

der <- c(dS, dE, dI, dR)

return(list(der))

1)
}

data_out <- as.data.frame(ode(inits, dt, SEIR_ex, parms = parms))

Your code should now look something like this.

o This is almost exactly like our boilerplate code.
e Use the inits, dt, and parms I specified

7/30

library(deSolve)

dt <- seq(0, 365, 1)
inits <- c(S = 999999,E = 0, I = 1, R = 0)
parms <- c(B = 0.45, g = 1/5.61, s = 1/5.3, f = 0.6)

SEIR_ex <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S + E+ I+ R

dS <- - (B xS x I) / N

dE <- + (B xS xI) / N- (s *x E)
dI <- (s x E) - (g * I)

dR <- (1 - f) » (g * I)

der <- c(dS, dE, dI, dR)

return(list(der))

1)
}

data_out <- as.data.frame(ode(inits, dt, SEIR_ex, parms = parms))

Your code should now look something like this.

o This is almost exactly like our boilerplate code.
e Use the inits, dt, and parms I specified

Should all be very familiar by now. Review previous slides if this is still

unclear.
7/ 30

Plot of all lines

matplot(data_out[, 1], data_out[, 2:5], type = '1',
ylab = 'People', xlab = 'Time (days)',lty = 1)
legend(x = "topright", legend = c('S', 'E', 'I', 'R'), col = 1:4, lty

1)

] —
—
o | —_—
; ==
. 2
8
o % N
¥
=
2.
] | I | |
0 100 200 300
Time {days)

8/30

Plot of infected

matplot(data_out[, 1], data_out[, 4], type = 'l',
ylab = 'Infected', xlab = 'Time (days)')

=]
=
&
g 2.
} 5
)
=
-
o —
I I I I
0 100 200 300
Time {days)

9/30

Question 2

With a neighbor, add compartments C for total cases
and D for total deaths

Add new compartments

SEIR_ex <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S + E+ I+ R

dS <- - (B xS x I) / N

dE <- + (B xS xI) / N- (s *x E)
dI <- (s x E) - (g * I)

dR <- (1 - f) » (g * I)

der <- c(dS, dE, dI, dR)

return(list(der))

1)
¥

Again, start with code you already have. Add:
e dc which is the cumulative cases

e dp which is the total number of deaths

11/ 30

Add new compartments

SEIR_altl <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S+ E+1I+R

dS
dE
dI
dR

dC
dD

<- - (BxS x1I) /N
<-+ (BxS *I)/ N-=- (s * E)
<- (s x E) - (g x I)
<= (1 - f) x (g x I)

<- s % E
<- f x g *x I

der <- c(dS, dE, dI, dRr, dC, dD)

return(list(der))

})
}

Don't forget to return dc and do and add them in -inits.

12 J"f 30

Full Solution

inits_altl <- c(S = 999999,E = 0, I =1, R=0, C =0, D = 0)

SEIR_altl <- function(t, x, parms) {
with(as.list(c(parms, x)), {

N<-S +E+ I+ R

dS <- - (B xS x I) / N

dE <- + (B xS xI) / N- (s *x E)
dI <- (s * E) - (g *» I)

dR <- (1 - f) » (g * I)

dC <- s *x E
dD <- f x g x I

der <- c(dS, dE, dI, dR, dC, dD)

return(list(der))

})
}

data_altl <- as.data.frame(ode(inits_altl, dt, SEIR_altl, parms = parms))

13/30

Plot of all lines

matplot(data_altl[, 1], data_altl[, 2:7], type = '1',
ylab = 'People', xlab = 'Time (days)',lty = 1)

legend(x = "topright", legend = c('S', 'E', 'I', 'R', 'C', 'D"),
col = 1:6, lty = 1)

] S
—
uw | —
: i
sl [
&
8
a % N
=
=
-7
3 | I | |
0 100 200 300
Time {days)

14/30

Question 3

Time-varying transmission probability

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = pe =7

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = Be =7
e ASsume:
o k= 0.0097
o 8=0.45

o 7 = 0 (immediate control measures)

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = Be =7
e ASsume:
o k= 0.0097
o 8=0.45

o 7 = 0 (immediate control measures)

With a neighbor, plot g as a function of time from¢ = 0 to ¢ = 120

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = Be =7
e ASsume:
o k= 0.0097
o 8=0.45

o 7 = 0 (Immediate control measures)
With a neighbor, plot g as a function of time from¢ = 0 to ¢ = 120

e Hints:

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = Be =7
e ASsume:
o k= 0.0097
o 8=0.45

o 7 = 0 (Immediate control measures)
With a neighbor, plot g as a function of time from¢ = 0 to ¢ = 120

e Hints:
o Make a sequence

Time-varying transmission

Althaus parameterizes transmission probability as:

B(t) = Be =7
e ASsume:
o k= 0.0097
o 8=0.45

o 7 = 0 (Immediate control measures)
With a neighbor, plot g as a function of time from¢ = 0 to ¢ = 120

e Hints:
o Make a sequence
o Vectorized formulas are your friend

Solution

Set constants
betad <- 0.45

k <- 0.0097

tau <- 0

Plug into formula
days <- 1:120
betas <- beta® * exp(-k * (days - tau))

Plot 1t
plot(x = days, y = betas, type = "1")

betas
015 030 0.45
[I

0 20 40 60 a0 100 120

17/30

Solution

Set constants
betad <- 0.45

k <- 0.0097

tau <- 0

Plug into formula

days <- 1:120

betas <- beta® * exp(-k * (days - tau))
Plot 1t

plot(x = days, y = betas, type = "1")

Set some constants. Not necessary, but makes the formula clearer.

18/30

Solution

beta® <- 0.45
k <- 0.0097
tau <- 0

days <- 1:120
betas <- beta® * exp(-k * (days - tau))

plot(x = days, y = betas, type = "1")

Set some constants. Not necessary, but makes the formula clearer.

Make a sequence of days (or seq(e, 120, 1/24) for calculate hourly)

19/ 30

Solution

beta® <- 0.45
k <- 0.0097
tau <- 0

days <- 1:120
betas <- beta® * exp(-k * (days - tau))

plot(x = days, y = betas, type = "1")

Set some constants. Not necessary, but makes the formula clearer.
Make a sequence of days (or seq(e, 120, 1/24) for calculate hourly)

Make a new vector with the formula we want. Even though k, tau, and betao
are scalars, R will automatically vectorize (perform element-wise calculations)
on days since it has length > 1. (Try print(betas) if this is unclear.)

20/ 30

Solution

beta® <- 0.45
k <- 0.0097
tau <- 0

days <- 1:120
betas <- beta® * exp(-k * (days - tau))

plot(x = days, y = betas, type = "1")

Set some constants. Not necessary, but makes the formula clearer.
Make a sequence of days (or seq(e, 120, 1/24) for calculate hourly)

Make a new vector with the formula we want. Even though k, tau, and betao
are scalars, R will automatically vectorize (perform element-wise calculations)
on days since it has length > 1. (Try print(betas) if this is unclear.)

Plot it.

21/ 30

Question 4

Now calculate and plot the changing Ro

Solution

Hint: This is (literally) one line of code to calculate and
one line of code to plot.

Solution

Hint: This is (literally) one line of code to calculate and
one line of code to plot.

ros <- betas / (1/5.61)
plot(x = days, y = rOs, type = "1")

10 15 20 25

0 20 40 60 a0 100 120

days

23 /30

On what day is RO < 17

24/ 30

On what day is RO < 17

e Try help(which)

24/ 30

On what day is RO < 17

e Try help(which)

e Combine that with indexing

24/ 30

On what day is RO < 17

e Try help(which)

e Combine that with indexing
which(r@s <= 1)[1]

[1] 96

24/ 30

On what dayisR0 <17

plot(x = days, y = rOs, type = "1")
lines(x = days, y = rep(l, length(days)), col = 'red')

[Mig]

o~] T

(= o

e HE

2 B

E% i SO
| I I I __I
0 20 40 60 a0 100 b

days
Or we could do it visually.

(If this isn't clear, see help(rep) and consider why it is necessary.)

25 /30

With a neighbor, add the time-varying beta
to SEIR model

Assume tau=0 for simplicity

Solution

SEIR_alt2 <- function(t, x, parms) {
with(as.list(c(parms, x)), {

B
N
dsS
dE
dI
dR

dC
dD

<- B_init * exp(-k * t)

<- S+ E+1+R
<- -(BxS x~1I) /N
<- +(B xS xI)/ N-=- (s *x E)
<- (s * E) - (g * I)
*

<= (1 - f) (g * I)

<- s % E
<- f x g *x I

der <- c(dS, dE, dI, drR, dC, dD)

return(list(der))

})

Yes, that's it.*

* NOTE: This only works when tau=0. Need 1ifelse() if we incorporate tau.

27/ 30

Examine one of the countries

(Do this on your own or with a neighbor)

Where is the data?

Althaus's GitHub: https://github.com/calthaus/Ebola*

* NOTE: See the Intro to R tutorial if you
don't know how to import csv files.

29 /30

https://github.com/calthaus/Ebola
https://github.com/calthaus/Ebola

That's it.
Thanks

