
Ebola	Worksheet

From	Wednesday	lecture	–	But	Slower

Mathew	Kiang

2/1/2017

Loading	[MathJax]/jax/output/HTML-CSS/jax.js



Goals	for	today

Go	over	the	Ebola	handout*

*Again,	only	providing	you	with	enough	code	to	finish	it	on	your	own.



Download	the	code*

https://git.io/vD3W0

*Don't	use	the	code	on	Canvas.

https://git.io/vD3W0


Question	1*

Make	an	SEIR	model	that	incorporates	case	fatality
ratio	f

*Sort	of	--	Questions	are	unnumbered	on	the
worksheet.



Start	with	code	you	already	have
SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{
								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I
								der	<-	c(dS,	dE,	dI,	dR)
								return(list(der))
				})	
}

Here	is	your	boilerplate	SEIR	code.	Incoporate	 ,	which	is	a	case	fatality	ratio.
Recall,	this	is	the	fraction	of	infectious	who	do	not	recover.

f



Start	with	code	you	already	have
SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{
								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I
								der	<-	c(dS,	dE,	dI,	dR)
								return(list(der))
				})	
}

Here	is	your	boilerplate	SEIR	code.	Incoporate	 ,	which	is	a	case	fatality	ratio.
Recall,	this	is	the	fraction	of	infectious	who	do	not	recover.

Also,	change	a	to	s	( )	and	r	to	g	( )	to	be	consistent	with	the	Althaus

f

σ γ



Start	with	code	you	already	have
SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{
								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I
								der	<-	c(dS,	dE,	dI,	dR)
								return(list(der))
				})	
}

Here	is	your	boilerplate	SEIR	code.	Incoporate	 ,	which	is	a	case	fatality	ratio.
Recall,	this	is	the	fraction	of	infectious	who	do	not	recover.

Also,	change	a	to	s	( )	and	r	to	g	( )	to	be	consistent	with	the	Althaus

We	are	not	going	to	use	b	*	k,	so	replace	that	with	 	as	B

f

σ γ

β



Work	with	a	neighbor	to	make	this	model

Remember:

rename	a	to	s

rename	r	to	g

use	B	instead	of	b	*	k



library(deSolve)

dt	<-	seq(0,	365,	1)	
inits	<-	c(S	=	999999,E	=	0,	I	=	1,	R	=	0)	
parms	<-	c(B	=	0.45,	g	=	1/5.61,	s	=	1/5.3,	f	=	0.6)

SEIR_ex	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}

data_out	<-	as.data.frame(ode(inits,	dt,	SEIR_ex,	parms	=	parms))

Your	code	should	now	look	something	like	this.

This	is	almost	exactly	like	our	boilerplate	code.



library(deSolve)

dt	<-	seq(0,	365,	1)	
inits	<-	c(S	=	999999,E	=	0,	I	=	1,	R	=	0)	
parms	<-	c(B	=	0.45,	g	=	1/5.61,	s	=	1/5.3,	f	=	0.6)

SEIR_ex	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}

data_out	<-	as.data.frame(ode(inits,	dt,	SEIR_ex,	parms	=	parms))

Your	code	should	now	look	something	like	this.

This	is	almost	exactly	like	our	boilerplate	code.
Use	the	inits,	dt,	and	parms	I	specified



library(deSolve)

dt	<-	seq(0,	365,	1)	
inits	<-	c(S	=	999999,E	=	0,	I	=	1,	R	=	0)	
parms	<-	c(B	=	0.45,	g	=	1/5.61,	s	=	1/5.3,	f	=	0.6)

SEIR_ex	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}

data_out	<-	as.data.frame(ode(inits,	dt,	SEIR_ex,	parms	=	parms))

Your	code	should	now	look	something	like	this.

This	is	almost	exactly	like	our	boilerplate	code.
Use	the	inits,	dt,	and	parms	I	specified

Should	all	be	very	familiar	by	now.	Review	previous	slides	if	this	is	still
unclear.



Plot	of	all	lines
matplot(data_out[,	1],	data_out[,	2:5],	type	=	'l',	
								ylab	=	'People',	xlab	=	'Time	(days)',lty	=	1)
legend(x	=	"topright",	legend	=	c('S',	'E',	'I',	'R'),	col	=	1:4,	lty	=	1)



Plot	of	infected
matplot(data_out[,	1],	data_out[,	4],	type	=	'l',	
								ylab	=	'Infected',	xlab	=	'Time	(days)')



Question	2

With	a	neighbor,	add	compartments	C	for	total	cases
and	D	for	total	deaths



Add	new	compartments
SEIR_ex	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}

Again,	start	with	code	you	already	have.	Add:

dC	which	is	the	cumulative	cases

dD	which	is	the	total	number	of	deaths



Add	new	compartments
SEIR_alt1	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								dC	<-	s	*	E
								dD	<-	f	*	g	*	I

								der	<-	c(dS,	dE,	dI,	dR,	dC,	dD)

								return(list(der))
				})	
}

Don't	forget	to	return	dC	and	dD	and	add	them	in	inits.



Full	Solution
inits_alt1	<-	c(S	=	999999,E	=	0,	I	=	1,	R	=	0,	C	=	0,	D	=	0)	

SEIR_alt1	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R
								dS	<-	-	(B	*	S	*	I)	/	N	
								dE	<-	+	(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								dC	<-	s	*	E
								dD	<-	f	*	g	*	I

								der	<-	c(dS,	dE,	dI,	dR,	dC,	dD)

								return(list(der))
				})	
}

data_alt1	<-	as.data.frame(ode(inits_alt1,	dt,	SEIR_alt1,	parms	=	parms))



Plot	of	all	lines
matplot(data_alt1[,	1],	data_alt1[,	2:7],	type	=	'l',	
								ylab	=	'People',	xlab	=	'Time	(days)',lty	=	1)
legend(x	=	"topright",	legend	=	c('S',	'E',	'I',	'R',	'C',	'D'),	
							col	=	1:6,	lty	=	1)



Question	3

Time-varying	transmission	probability



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

β(t) = βe−k(t−τ)



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

Assume:

	(immediate	control	measures)

β(t) = βe−k(t−τ)

k = 0.0097
β = 0.45
τ = 0



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

Assume:

	(immediate	control	measures)

With	a	neighbor,	plot	 	as	a	function	of	time	from	 	to	

β(t) = βe−k(t−τ)

k = 0.0097
β = 0.45
τ = 0

β t = 0 t = 120



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

Assume:

	(immediate	control	measures)

With	a	neighbor,	plot	 	as	a	function	of	time	from	 	to	

Hints:

β(t) = βe−k(t−τ)

k = 0.0097
β = 0.45
τ = 0

β t = 0 t = 120



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

Assume:

	(immediate	control	measures)

With	a	neighbor,	plot	 	as	a	function	of	time	from	 	to	

Hints:
Make	a	sequence

β(t) = βe−k(t−τ)

k = 0.0097
β = 0.45
τ = 0

β t = 0 t = 120



Time-varying	transmission
Althaus	parameterizes	transmission	probability	as:

Assume:

	(immediate	control	measures)

With	a	neighbor,	plot	 	as	a	function	of	time	from	 	to	

Hints:
Make	a	sequence
Vectorized	formulas	are	your	friend

β(t) = βe−k(t−τ)

k = 0.0097
β = 0.45
τ = 0

β t = 0 t = 120



Solution
##	Set	constants
beta0	<-	0.45
k	<-	0.0097
tau	<-	0

##	Plug	into	formula
days	<-	1:120
betas	<-	beta0	*	exp(-k	*	(days	-	tau))

##	Plot	it
plot(x	=	days,	y	=	betas,	type	=	"l")



Solution
##	Set	constants
beta0	<-	0.45
k	<-	0.0097
tau	<-	0

##	Plug	into	formula
days	<-	1:120
betas	<-	beta0	*	exp(-k	*	(days	-	tau))

##	Plot	it
plot(x	=	days,	y	=	betas,	type	=	"l")

Set	some	constants.	Not	necessary,	but	makes	the	formula	clearer.



Solution
##	Set	constants
beta0	<-	0.45
k	<-	0.0097
tau	<-	0

##	Plug	into	formula
days	<-	1:120
betas	<-	beta0	*	exp(-k	*	(days	-	tau))

##	Plot	it
plot(x	=	days,	y	=	betas,	type	=	"l")

Set	some	constants.	Not	necessary,	but	makes	the	formula	clearer.

Make	a	sequence	of	days	(or	seq(0,	120,	1/24)	for	calculate	hourly	 )β



Solution
##	Set	constants
beta0	<-	0.45
k	<-	0.0097
tau	<-	0

##	Plug	into	formula
days	<-	1:120
betas	<-	beta0	*	exp(-k	*	(days	-	tau))

##	Plot	it
plot(x	=	days,	y	=	betas,	type	=	"l")

Set	some	constants.	Not	necessary,	but	makes	the	formula	clearer.

Make	a	sequence	of	days	(or	seq(0,	120,	1/24)	for	calculate	hourly	 )

Make	a	new	vector	with	the	formula	we	want.	Even	though	k,	tau,	and	beta0
are	scalars,	R	will	automatically	vectorize	(perform	element-wise	calculations)
on	days	since	it	has	length	>	1.	(Try	print(betas)	if	this	is	unclear.)

β



Solution
##	Set	constants
beta0	<-	0.45
k	<-	0.0097
tau	<-	0

##	Plug	into	formula
days	<-	1:120
betas	<-	beta0	*	exp(-k	*	(days	-	tau))

##	Plot	it
plot(x	=	days,	y	=	betas,	type	=	"l")

Set	some	constants.	Not	necessary,	but	makes	the	formula	clearer.

Make	a	sequence	of	days	(or	seq(0,	120,	1/24)	for	calculate	hourly	 )

Make	a	new	vector	with	the	formula	we	want.	Even	though	k,	tau,	and	beta0
are	scalars,	R	will	automatically	vectorize	(perform	element-wise	calculations)
on	days	since	it	has	length	>	1.	(Try	print(betas)	if	this	is	unclear.)

Plot	it.

β



Question	4

Now	calculate	and	plot	the	changing	R0



Solution

Hint:	This	is	(literally)	one	line	of	code	to	calculate	and
one	line	of	code	to	plot.



Solution

Hint:	This	is	(literally)	one	line	of	code	to	calculate	and
one	line	of	code	to	plot.

r0s	<-	betas	/	(1/5.61)
plot(x	=	days,	y	=	r0s,	type	=	"l")



On	what	day	is	R0	<	1?



On	what	day	is	R0	<	1?
Try	help(which)



On	what	day	is	R0	<	1?
Try	help(which)

Combine	that	with	indexing



On	what	day	is	R0	<	1?
Try	help(which)

Combine	that	with	indexing

which(r0s	<=	1)[1]

##	[1]	96



On	what	day	is	R0	<	1?
plot(x	=	days,	y	=	r0s,	type	=	"l")
lines(x	=	days,	y	=	rep(1,	length(days)),	col	=	'red')

Or	we	could	do	it	visually.

(If	this	isn't	clear,	see	help(rep)	and	consider	why	it	is	necessary.)



With	a	neighbor,	add	the	time-varying	beta
to	SEIR	model

Assume	tau=0	for	simplicity



Solution
SEIR_alt2	<-	function(t,	x,	parms)	{
				with(as.list(c(parms,	x)),	{

								B		<-	B_init	*	exp(-k	*	t)
								N		<-	S	+	E	+	I	+	R
								dS	<-	-(B	*	S	*	I)	/	N	
								dE	<-	+(B	*	S	*	I)	/	N	-	(s	*	E)	
								dI	<-	(s	*	E)	-	(g	*	I)	
								dR	<-	(1	-	f)	*	(g	*	I)	

								dC	<-	s	*	E
								dD	<-	f	*	g	*	I

								der	<-	c(dS,	dE,	dI,	dR,	dC,	dD)

								return(list(der))
				})	
}

Yes,	that's	it.*

*	NOTE:	This	only	works	when	tau=0.	Need	ifelse()	if	we	incorporate	tau.



Examine	one	of	the	countries

(Do	this	on	your	own	or	with	a	neighbor)



Where	is	the	data?

Althaus's	GitHub:	https://github.com/calthaus/Ebola*

*	NOTE:	See	the	Intro	to	R	tutorial	if	you
don't	know	how	to	import	csv	files.

https://github.com/calthaus/Ebola
https://github.com/calthaus/Ebola


That's	it.

Thanks


