
Networks	Worksheet
Mathew	Kiang

2/17/2017

Loading	[MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Networks

Guys,	networks	are	awesome.

*Like	all	labs,	I'm	just	helping	you	walk
through	the	code	—	you	gotta	figure	out	the

rest	of	the	worksheet	on	your	own.

Processing	math:	100%

Download	the	code*

https://git.io/vDSzh

Also	download	the	data

https://git.io/vDSgT

https://git.io/vDSzh
https://git.io/vDSgT

Let's	first	walk	through	the	function	we
gave	you	again.

You	really	don't	need	to	know	this.	This	is	entirely	for
your	own	personal	edification.

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

networkPractical	just	takes	a	few	arguments.

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

networkPractical	just	takes	a	few	arguments.

network	is	a	network	object	that	you	give	it

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

networkPractical	just	takes	a	few	arguments.

network	is	a	network	object	that	you	give	it

attackRate	is	the	probability	of	infection	between	an	I	and	an	S
(conditional	on	them	being	connected	by	an	edge)

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

networkPractical	just	takes	a	few	arguments.

network	is	a	network	object	that	you	give	it

attackRate	is	the	probability	of	infection	between	an	I	and	an	S
(conditional	on	them	being	connected	by	an	edge)

acquireImmunity	is	the	probability	of	gaining	immunity	after	infection

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

networkPractical	just	takes	a	few	arguments.

network	is	a	network	object	that	you	give	it

attackRate	is	the	probability	of	infection	between	an	I	and	an	S
(conditional	on	them	being	connected	by	an	edge)

acquireImmunity	is	the	probability	of	gaining	immunity	after	infection

runTime	is	just	how	long	you	want	to	run	the	simulation.

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population	
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

First,	just	find	the	number	of	people	in	your	population	(in	this	case,	the
network)

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population	}}
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	
		timeSeries	<-	NULL
		keepStatus	<-	NULL

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

Then	we	are	going	to	make	a	list	that	contains	the	status	of	each	node.	We	will
it	up	with	0	because	everybody	is	susceptile.	(Here,	we	are	just	declaring	the
number	of	dimensions	to	be	1	colum	with	as	many	rows	are	there	are	people).

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population	}}
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	}}
		timeSeries	<-	NULL	
		keepStatus	<-	NULL	

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

We	just	make	two	other	objects	(empty)	that	we	will	use	later	in	our	loops.
(Recall	from	previous	labs	that	if	you	make	an	object	inside	of	a	loop,	it	gets
overwritten	every	time	you	run	it.)

Code	review	—	networkPractical()

networkPractical	<-	function(network,	attackRate,	acquireImmunity,	runTime)	{

		#we	will	encode	susceptible	individuals	as	0,	infected	as	1,	immune	as	2
		numberOfPeople	<-	network.size(network)	#size	of	the	population	}}
		#start	out	with	everyone	susceptible
		statusList	<-	array(0,dim=c(numberOfPeople,1))	}}
		timeSeries	<-	NULL	
		keepStatus	<-	NULL	

		#INFECT	THE	FIRST	PERSON!
		statusList[1]	<-	1

Infect	somebody.	In	this	case,	we	are	infecting	the	first	person,	but	we	could
also	just	infect	somebody	randomly.	We	use	1	to	signify	infected	(recall	0	is	for
suspcetibles).

Code	review	—	networkPractical()

for(time	in	1:runTime)	{
				print(time)	

				whoIsInfected	<-	which(statusList==1)
				whoIsImmune	<-	which(statusList==2)

				if(length(whoIsInfected)==numberOfPeople	|	
							length(whoIsImmune)==numberOfPeople	|	
							length(whoIsInfected)==0)	{}

Now	we	get	to	the	good	stuff.	We	are	going	to	run	a	for()	loop	for	as	many
timesteps	as	specified	in	runTime.	We	print	it	just	so	we	have	some	idea	of
whether	or	not	the	loop	is	going.

Code	review	—	networkPractical()

for(time	in	1:runTime)	{
				print(time)	

			whoIsInfected	<-	which(statusList==1)	
			whoIsImmune	<-	which(statusList==2)	

				if(length(whoIsInfected)==numberOfPeople	|	
							length(whoIsImmune)==numberOfPeople	|	
							length(whoIsInfected)==0)	{}

Recall	from	previous	labs	that	which()	just	returns	the	index	(row-number	in
this	case)	for	which	the	condition	is	true.	So	we	are	asking	whoIsInfected?	And
we	get	back	a	list	that	tells	us	which	row	has	an	infected	status	1.	(Also	recall
that	each	row	represents	a	node	or	person	so	in	this	case	you	can	think	of	it	as
an	ID	as	well.)

Code	review	—	networkPractical()

for(time	in	1:runTime)	{
				print(time)	

			whoIsInfected	<-	which(statusList==1)	
			whoIsImmune	<-	which(statusList==2)	

				if(length(whoIsInfected)==numberOfPeople	|	
							length(whoIsImmune)==numberOfPeople	|	
							length(whoIsInfected)==0)	{}

Recall	from	previous	labs	that	which()	just	returns	the	index	(row-number	in
this	case)	for	which	the	condition	is	true.	So	we	are	asking	whoIsInfected?	And
we	get	back	a	list	that	tells	us	which	row	has	an	infected	status	1.	(Also	recall
that	each	row	represents	a	node	or	person	so	in	this	case	you	can	think	of	it	as
an	ID	as	well.)

Obviously,	the	first	time	you	run	this,	nobody	will	be	Immunte	and	only	one
(the	one	we	assign)	will	be	infected,	but	it	changes	each	time	we	go	through
the	for	loop.

Code	review	—	networkPractical()

for(time	in	1:runTime)	{
				print(time)	

				whoIsInfected	<-	which(statusList==1)	
				whoIsImmune	<-	which(statusList==2)	

				if(length(whoIsInfected)==numberOfPeople	|	
							length(whoIsImmune)==numberOfPeople	|	
							length(whoIsInfected)==0)	{}

This	is	just	creating	a	stop	condition.	The	pipe	|	means	or.	If	(1)	everybody	is
infected	or	(2)	everybody	is	immunte	or	(3)	nobody	is	infected,	then	run	what
is	inside	the	bracket.	Since	nothing	is	in	the	bracket,	it	will	break	out	of	the
loop.

Code	review	—	networkPractical()

else	{
for(i	in	1:length(whoIsInfected)){	#only	look	at	people	who	are	infected
				#see	who	is	connected	to	infected	node
				contacts	<-	get.neighborhood(network,	whoIsInfected[i])	
				#see	which	contacts	are	susceptible	to	infection
				suscContacts	<-	which(statusList[contacts]==0)

That's	all	boring	though.	This	section	starts	what	to	do	if	you	have	both
infected	and	susceptibles.

Go	through	everybody	who	is	infected.	Get	all	their	contacts	(get.neighborhood)
and	then	find	the	ones	that	are	susceptible.

Code	review	—	networkPractical()

if(length(suscContacts)>0)	{
				#see	which	infectious	contacts	lead	to	infection
				successfulInfect	<-	which(runif(length(suscContacts))<attackRate)	

				if(length(successfulInfect)>0){				
								#INFECT	SUSCEPTIBLES!
								statusList[contacts[suscContacts[successfulInfect]]]	<-	1	
				}

If	there	are	any	that	are	susceptible	(that	is,	if	length(suscContacts)	>	0),	try	to
infect	them.	Here,	we	use	a	random	uniform	(runif)	to	draw	a	number
between	 .	If	that	number	is	less	than	our	attack	rate,	we	infect	them.
Otherwise,	we	do	nothing.

The	second	half	then	says,	if	anybody	was	infected	(successfulInfect),	change
their	status	to	1	to	indicate	they	were	infected.

[0, 1]

Code	review	—	networkPractical()

if(length(whoIsInfected)>0){
				#see	who	becomes	immune
				becomeImmune	<-	which(runif(length(whoIsInfected))	<	acquireImmunity)
				statusList[whoIsInfected[becomeImmune]]	<-	2
}

Now	let's	look	at	everybody	who	is	infected,	and	again,	randomly	assign	them
to	immune	using	the	runif.	This	is	the	same	as	above,	just	using	the	random
uniform	number	to	assign	immunity	instead	of	infection.

Code	review	—	networkPractical()

S	<-	length(which(statusList==0))
I	<-	length(which(statusList==1))
R	<-	length(which(statusList==2))
timeSeries	<-	rbind(timeSeries,c(S,I,R))	#keep	track	of	people
keepStatus	<-	cbind(keepStatus,statusList)

Now,	every	time	we	do	this	loop	(remember	we	are	doing	this	runTimes	many
times),	record	the	number	of	susceptible,	infected,	and	recovered.	Then	bind
that	to	the	timeSeries	object	we	made	above.	Similarly,	keep	track	of	all	the
statuses	for	every	timestep	in	the	keepStatus	object.

Question	1:	Install	the	network	package

You	got	this	one.

But	in	case	you	don't:

##	Install	it
install.packages("network")

##	Load	it
library(network)

Question	2:	Import	the	networks

You	got	this	one	too

Remember,	the	GUI	is	your	friend.

library(readr)

blah	<-	read_delim("./data/network1.txt",	delim	=	"	",	
																			col_names	=	FALSE,	trim_ws	=	TRUE)
mat1	<-	read_delim("./data/mat1-1.txt",	delim	=	"	",	
																			col_names	=	FALSE,	trim_ws	=	TRUE)
mat3	<-	read_delim("./data/mat1-3.txt",	delim	=	"\t",	
																			col_names	=	FALSE,	trim_ws	=	TRUE)
mat4	<-	read_delim("./data/mat3.txt",	delim	=	"\t",	
																			col_names	=	FALSE,	trim_ws	=	TRUE)
matBA	<-	read_delim("./data/ba_net.txt",	delim	=	"	",	
																			col_names	=	FALSE,	trim_ws	=	TRUE)

NOTE:	Some	of	these	are	delimited	with	a	tab	("\t")	and	some	are	whitespace
delimited	("	").	Use	the	GUI	so	you	can	see	a	live	preview	and	modify
accodingly.	Also	don't	forget	there	are	no	headers.

Convert	them	to	networks

net1		<-	as.network(blah,	directed	=	FALSE)
net3		<-	as.network(mat3,	directed	=	FALSE)
net4		<-	as.network(mat4,	directed	=	FALSE)

##	Note:	These	have	nodes	labeled	0.	We	need	to	add	1
##	so	that	the	zeros	are	not	there.
mat1	<-	mat1	+	1
matBA	<-	matBA	+	1
net2		<-	as.network(mat1,	directed	=	FALSE)
netBA	<-	as.network(matBA,	directed	=	FALSE)

Plot	the	networks	—	net1

plot.network(net1,	vertex.cex	=	1.5)

Plot	the	networks	—	net2

plot.network(net2,	vertex.cex	=	1.5)

Plot	the	networks	—	net3

plot.network(net3,	vertex.cex	=	1.5)

Plot	the	networks	—	net4

plot.network(net4,	vertex.cex	=	1.5)

Plot	the	networks	—	netBA

plot.network(netBA,	vertex.cex	=	1.5)

What's	the	point?

What's	the	point?

Hopefully,	it's	clear	by	looking	at	the	plots	of	the	networks	what	we
want	to	learn	here.	How	does	the	structure	of	the	network	affect

disease	dynamics?	What	about	networks	with	isolates	and	more	than
one	connected	component?	What	about	dense	vs	sparse	networks?

Question	3.	Degree	distributions

What's	this	code	do?
deg	<-	NULL
for(i	in	1:network.size(net1))	{
				deg	<-	rbind(deg,	length(get.neighborhood(net1,	i)))
}

What's	this	code	do?
deg	<-	NULL
for(i	in	1:network.size(net1))	{
				deg	<-	rbind(deg,	length(get.neighborhood(net1,	i)))
}

For	every	node	in	the	network...

What's	this	code	do?
deg	<-	NULL
for(i	in	1:network.size(net1))	{
				deg	<-	rbind(deg,	length(get.neighborhood(net1,	i)))
}

For	every	node	in	the	network...

Go	through	and	get	the	number	of	neighbors	(length(get.neighborhood())).

What's	this	code	do?
deg	<-	NULL
for(i	in	1:network.size(net1))	{
				deg	<-	rbind(deg,	length(get.neighborhood(net1,	i)))
}

For	every	node	in	the	network...

Go	through	and	get	the	number	of	neighbors	(length(get.neighborhood())).

And	append	it	to	an	object	called	deg.

What's	this	code	do?
deg	<-	NULL
for(i	in	1:network.size(net1))	{
				deg	<-	rbind(deg,	length(get.neighborhood(net1,	i)))
}

For	every	node	in	the	network...

Go	through	and	get	the	number	of	neighbors	(length(get.neighborhood())).

And	append	it	to	an	object	called	deg.

That's	it.	Just	get	the	number	of	neighbors	for	every	node	in	a	network.

Degree	distribution	—	net1
deg_net1	<-	NULL
for(i	in	1:network.size(net1))	{
				deg_net1	<-	rbind(deg_net1,	length(get.neighborhood(net1,	i)))
}
hist(deg_net1)

Degree	distribution	—	net2
deg_net2	<-	NULL
for(i	in	1:network.size(net2))	{
				deg_net2	<-	rbind(deg_net2,	length(get.neighborhood(net2,	i)))
}
hist(deg_net2)

Degree	distribution	—	net3
deg_net3	<-	NULL
for(i	in	1:network.size(net3))	{
				deg_net3	<-	rbind(deg_net3,	length(get.neighborhood(net3,	i)))
}
hist(deg_net3)

Degree	distribution	—	net4
deg_net4	<-	NULL
for(i	in	1:network.size(net4))	{
				deg_net4	<-	rbind(deg_net4,	length(get.neighborhood(net4,	i)))
}
hist(deg_net4)

Degree	distribution	—	netBA
deg_netBA	<-	NULL
for(i	in	1:network.size(netBA))	{
				deg_netBA	<-	rbind(deg_netBA,	length(get.neighborhood(netBA,	i)))
}
hist(deg_netBA)

Question	4.	Simulating	on	a	network

Simulate	on	net2
sim_net2a	<-	networkPractical(network	=	net2,	attackRate	=	.2,	
																														acquireImmunity	=	.2,	runTime	=	50)

matplot(sim_net2a$timeSeries,	type	=	"l",	lty	=	1)

Simulate	on	net2
matplot(sim_net2a$timeSeries,	type	=	"l",	lty	=	1)

NOTE:	Every	run	results	in	a	different	plot.	Why?

Question	5.	Plot	the	network	with	node
status

Plot	with	status
plot.network(net2,	vertex.col	=	sim_net2a$status[,	10]	+	2,	
													vertex.cex	=	1.5)
legend("topright",	fill	=	c(2,	3,	4),	legend	=	c("S",	"I",	"R"))

Questions	6	-	9

Just	use	previous	slides	with	different	parameters.
Change	timesteps.	Plot	two	infectious	curves	on	the
same	plot.	Play	with	it	a	bit.	We	give	you	the	code	so
you	can	play	with	the	numbers	and	see	what	happens.

Don't	worry	about	the	code	too	much.

That's	it.

Thanks

