
Measles	Worksheet

From	1/30	lecture	–	But	Slower

Mathew	Kiang

1/31/2017

Loading	[MathJax]/jax/output/HTML-CSS/jax.js

Goals	for	today
1.	 Go	over	the	measles	handout

Goals	for	today
1.	 Go	over	the	measles	handout

Sort	of.	Not	going	to	answer	the	questions	for	you.	Just	going	to	help
you	go	through	the	code	to	answer	them	on	your	own.

Question	1

Make	an	SIR	model	for	measles

Question	1

Measles	epidemic:
Population:	1	million
Probability	of	infection	is	 	if	in	contact	with	an	infectious	person
12	respiratory	contacts	per	week
Disease	duration	of	1	week
For	now,	use	SIR	framework

.75

library(deSolve)

parms	<-	c(beta	=	0.333,	k	=	3	,	r	=	0.333)
inits	<-	c(S	=	499,	I	=	1,	R	=	0)
dt	<-	seq(0,	300,	1)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Start	with	the	boilerplate	code	we	gave	you	last	week.

library(deSolve)

parms	<-	c(beta	=	0.333,	k	=	3	,	r	=	0.333)
inits	<-	c(S	=	499,	I	=	1,	R	=	0)
dt	<-	seq(0,	300,	1)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																func	=	SIR,	parms	=	parms))

Modify	the	parameters	we	were	given.

library(deSolve)

parms	<-	c(beta	=	0.75,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	300,	1)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																func	=	SIR,	parms	=	parms))

Modify	the	parameters	we	were	given.

12	contacts	per	week
disease	duration	is	1	week
.75	probability	of	infectiousness
1	million	people	in	the	population

library(deSolve)

parms	<-	c(beta	=	0.75,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																func	=	SIR,	parms	=	parms))

Make	sure	your	time	scale	makes	sense	given	your	parameters.

300	weeks	seems	too	long,	so	we	change	it	to	10	weeks.
1	week	at	a	time	is	too	coarse,	so	we	change	it	to	days	()1

7

library(deSolve)

parms	<-	c(beta	=	0.75,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																func	=	SIR,	parms	=	parms))

Make	sure	your	time	scale	makes	sense	given	your	parameters.

300	weeks	seems	too	long,	so	we	change	it	to	10	weeks.
1	week	at	a	time	is	too	coarse,	so	we	change	it	to	days	()

But	any	small	number	would	work

1
7

matplot(x	=	simulation[,	1],	y	=	simulation[,	2:4],	type	=	"l",	
								lty	=	1,	xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	
								main	=	"Measles")
legend(x	=	"right",	legend	=	c('S',	'I',	'R'),	
							col	=	1:3,	lty	=	1)

Time-steps	are	arbitrary

For	example,	let's	do	days

parms	<-	c(beta	=	0.75,	k	=	12/7	,	r	=	1/7)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10	*	7,	1)

simulation_days	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																					func	=	SIR,	parms	=	parms))

Since	our	parms	are	in	units	of	weeks,	we	divide	by	 	to	make	them	days

We	change	our	time-steps	to	be	70	units	of	1	day	to	match	our	previous
simulation

7

parms	<-	c(beta	=	0.75,	k	=	12/7	,	r	=	1/7)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10	*	7,	1)

simulation_days	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																					func	=	SIR,	parms	=	parms))

Since	our	parms	are	in	units	of	weeks,	we	divide	by	 	to	make	them	days

We	change	our	time-steps	to	be	70	units	of	1	day	to	match	our	previous
simulation

NOTE:	We	save	the	simulations	in	different	variable

7

parms	<-	c(beta	=	0.75,	k	=	12/7	,	r	=	1/7)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10	*	7,	1)

simulation_days	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																																					func	=	SIR,	parms	=	parms))

Since	our	parms	are	in	units	of	weeks,	we	divide	by	 	to	make	them	days

We	change	our	time-steps	to	be	70	units	of	1	day	to	match	our	previous
simulation

NOTE:	We	save	the	simulations	in	different	variable

How	will	the	plot	change?

7

matplot(x	=	simulation_days[,	1],	y	=	simulation_days[,	2:4],	type	=	"l",	
								lty	=	1,	xlab	=	"Time	(days)",	ylab	=	"People	(count)",	
								main	=	"Measles")
legend(x	=	"right",	legend	=	c('S',	'I',	'R'),	
							col	=	1:3,	lty	=	1)

The	plot	does	not	change.

We	can	verify	this	by	looking	directly	at	the	data.

head(simulation)

##					time						S							I						R
##	1	0.0000	999999			1.000		0.000
##	2	0.1429	999997			3.136		0.267
##	3	0.2857	999989			9.833		1.104
##	4	0.4286	999965		30.832		3.729
##	5	0.5714	999891		96.671	11.960
##	6	0.7143	999659	303.054	37.764

head(simulation_days)

##			time						S							I						R
##	1				0	999999			1.000		0.000
##	2				1	999997			3.136		0.267
##	3				2	999989			9.833		1.104
##	4				3	999965		30.832		3.729
##	5				4	999891		96.671	11.960
##	6				5	999659	303.054	37.764

The	top	is	in	weeks,	the	bottom	is	in	days.

Do	this	for	chickenpox	(b=.51)

and	then	mumps	(b=.38)*

(You	can	do	this	on	your	own	—	I	believe	in	you.)

*	Don't	forget	to	save	the	results	in	different
variables.

Hopefully,	your	code	looks	like	this:
parms_mumps	<-	c(beta	=	0.38,	k	=	12	,	r	=	1)
parms_cpox	<-	c(beta	=	.51,	k	=	12,	r	=	1)
sim_mumps	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_mumps))
sim_cpox	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_cpox))

Just	make	a	new	set	of	parms	for	each	disease

Hopefully,	your	code	looks	like	this:
parms_mumps	<-	c(beta	=	0.38,	k	=	12	,	r	=	1)
parms_cpox	<-	c(beta	=	.51,	k	=	12,	r	=	1)
sim_mumps	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_mumps))
sim_cpox	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_cpox))

Just	make	a	new	set	of	parms	for	each	disease

Change	the	parameter	as	appropriate

Hopefully,	your	code	looks	like	this:
parms_mumps	<-	c(beta	=	0.38,	k	=	12	,	r	=	1)
parms_cpox	<-	c(beta	=	.51,	k	=	12,	r	=	1)
sim_mumps	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_mumps))
sim_cpox	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_cpox))

Just	make	a	new	set	of	parms	for	each	disease

Change	the	parameter	as	appropriate

Run	the	new	simulations	and	save	the	results	in	new	variables

Hopefully,	your	code	looks	like	this:
parms_mumps	<-	c(beta	=	0.38,	k	=	12	,	r	=	1)
parms_cpox	<-	c(beta	=	.51,	k	=	12,	r	=	1)
sim_mumps	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_mumps))
sim_cpox	<-	as.data.frame(ode(y	=	inits,	times	=	dt,
																															func	=	SIR,	parms	=	parms_cpox))

Just	make	a	new	set	of	parms	for	each	disease

Change	the	parameter	as	appropriate

Run	the	new	simulations	and	save	the	results	in	new	variables

dt	didn't	change,	our	model	(SIR())	didn't	change,	and	inits	didn't	change.

How	to	plot	multiple	things

For	example,	to	compare	infectious	curves

Compare	multiple	infectious	curves
plot(x	=	simulation$time,	y	=	simulation$I,	type	=	"l",	
					xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	main	=	"Infections")
lines(x	=	sim_cpox$time,	y	=	sim_cpox$I,	col	=	"red")
lines(x	=	sim_mumps$time,	y	=	sim_mumps$I,	col	=	"green")
legend(x	=	"topright",	legend	=	c('Measles',	'Chicken	Pox',	'Mumps'),	
							col	=	c("black",	"red",	"green"),	lty	=	1)

Wait,	what?
plot(x	=	simulation$time,	y	=	simulation$I,	type	=	"l",
					xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	main	=	"Infections")
lines(x	=	sim_cpox$time,	y	=	sim_cpox$I,	col	=	"red")
lines(x	=	sim_mumps$time,	y	=	sim_mumps$I,	col	=	"green")
legend(x	=	"topright",	legend	=	c('Measles',	'Chicken	Pox',	'Mumps'),	
							col	=	c("black",	"red",	"green"),	lty	=	1)

Plot	one	of	the	curves	(see	last	week's	slides	or	help(plot))	for	more.
type	=	'l'	means	you	want	a	line.
xlab,	ylab,	and	main	are	the	x-axis,	y-axis,	and	main	labels,
respectively.

Wait,	what?
plot(x	=	simulation$time,	y	=	simulation$I,	type	=	"l",
				xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	main	=	"Infections")
lines(x	=	sim_cpox$time,	y	=	sim_cpox$I,	col	=	"red")
lines(x	=	sim_mumps$time,	y	=	sim_mumps$I,	col	=	"green")
legend(x	=	"topright",	legend	=	c('Measles',	'Chicken	Pox',	'Mumps'),	
							col	=	c("black",	"red",	"green"),	lty	=	1)

Plot	one	of	the	curves	(see	last	week's	slides	or	help(plot))	for	more.
type	=	'l'	means	you	want	a	line.
xlab,	ylab,	and	main	are	the	x-axis,	y-axis,	and	main	labels,
respectively.

Now	plot	a	second	curve,	using	lines()	—	make	sure	to	give	it	a	different
color.

Recall	you	use	lines()	to	add	to	an	existing	plot()	object.

Wait,	what?
plot(x	=	simulation$time,	y	=	simulation$I,	type	=	"l",
				xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	main	=	"Infections")
lines(x	=	sim_cpox$time,	y	=	sim_cpox$I,	col	=	"red")
lines(x	=	sim_mumps$time,	y	=	sim_mumps$I,	col	=	"green")
legend(x	=	"topright",	legend	=	c('Measles',	'Chicken	Pox',	'Mumps'),	
							col	=	c("black",	"red",	"green"),	lty	=	1)

Plot	one	of	the	curves	(see	last	week's	slides	or	help(plot))	for	more.
type	=	'l'	means	you	want	a	line.
xlab,	ylab,	and	main	are	the	x-axis,	y-axis,	and	main	labels,
respectively.

Now	plot	a	second	curve,	using	lines()	—	make	sure	to	give	it	a	different
color.

Recall	you	use	lines()	to	add	to	an	existing	plot()	object.
Add	the	third	curve	—	again,	make	sure	to	give	it	a	different	color.

Wait,	what?
plot(x	=	simulation$time,	y	=	simulation$I,	type	=	"l",
				xlab	=	"Time	(weeks)",	ylab	=	"People	(count)",	main	=	"Infections")
lines(x	=	sim_cpox$time,	y	=	sim_cpox$I,	col	=	"red")
lines(x	=	sim_mumps$time,	y	=	sim_mumps$I,	col	=	"green")
legend(x	=	"topright",	legend	=	c('Measles',	'Chicken	Pox',	'Mumps'),	
							col	=	c("black",	"red",	"green"),	lty	=	1)

Plot	one	of	the	curves	(see	last	week's	slides	or	help(plot))	for	more.
type	=	'l'	means	you	want	a	line.
xlab,	ylab,	and	main	are	the	x-axis,	y-axis,	and	main	labels,
respectively.

Now	plot	a	second	curve,	using	lines()	—	make	sure	to	give	it	a	different
color.

Recall	you	use	lines()	to	add	to	an	existing	plot()	object.
Add	the	third	curve	—	again,	make	sure	to	give	it	a	different	color.
Add	a	legend,	specifying	each	line	in	order	under	legend	and	each	color	in
order	under	col.

How	to	find	the	time	of	max	infections

Also,	how	to	use	max()

When	was	the	peak	of	infections?
We	could	just	eyeball	it,	but	instead,	let's	find	the	value	of	our	time	column
when	the	peak	of	the	measles	epidemic	occurred.

When	was	the	peak	of	infections?
We	could	just	eyeball	it,	but	instead,	let's	find	the	value	of	our	time	column
when	the	peak	of	the	measles	epidemic	occurred.

simulation$time[which.max(simulation$I)]

##	[1]	2

When	was	the	peak	of	infections?
We	could	just	eyeball	it,	but	instead,	let's	find	the	value	of	our	time	column
when	the	peak	of	the	measles	epidemic	occurred.

simulation$time[which.max(simulation$I)]

##	[1]	2

So	the	epidemic	occurred	at	exactly	two	weeks	—	aggreeing	with	our	plot.

Ok,	what's	happening?
simulation$time[which.max(simulation$I)]

which.max()	is	a	function	that	returns	the	index	(location)	of	the	maximum
value	in	a	vector

Ok,	what's	happening?
simulation$time[which.max(simulation$I)]

which.max()	is	a	function	that	returns	the	index	(location)	of	the	maximum
value	in	a	vector

$	is	shorthand	for	specifying	a	single	column

Ok,	what's	happening?
simulation$time[which.max(simulation$I)]

which.max()	is	a	function	that	returns	the	index	(location)	of	the	maximum
value	in	a	vector

$	is	shorthand	for	specifying	a	single	column

[]	is	shorthand	for	selecting	a	specific	subset

Ok,	what's	happening?
simulation$time[which.max(simulation$I)]

which.max()	is	a	function	that	returns	the	index	(location)	of	the	maximum
value	in	a	vector

$	is	shorthand	for	specifying	a	single	column

[]	is	shorthand	for	selecting	a	specific	subset

So	we	are	saying	"find	the	row	index	that	corresponds	to	the	highest	value
of	simulation$I"

Ok,	what's	happening?
simulation$time[which.max(simulation$I)]

which.max()	is	a	function	that	returns	the	index	(location)	of	the	maximum
value	in	a	vector

$	is	shorthand	for	specifying	a	single	column

[]	is	shorthand	for	selecting	a	specific	subset

So	we	are	saying	"find	the	row	index	that	corresponds	to	the	highest	value
of	simulation$I"

Now	take	that	row	index	and	return	the	corresponding	value	of
simulation$time

Let's	verify
Find	the	maximum	value	of	simulation$I:

Let's	verify
Find	the	maximum	value	of	simulation$I:

max(simulation$I)

##	[1]	644530

Let's	verify
Find	the	maximum	value	of	simulation$I:

max(simulation$I)

##	[1]	644530

Which	index	is	this	max	value?	(TRUE	means	we	hit	the	max,	FALSE	otherwise)

max(simulation$I)	==	simulation$I

##		[1]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[12]	FALSE	FALSE	FALSE		TRUE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[23]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[34]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[45]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[56]	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
##	[67]	FALSE	FALSE	FALSE	FALSE	FALSE

Note	here	that	the	only	TRUE	is	in	the	15th	position.

Let's	verify
So	we	could	just	ask	for	the	15th	row	of	simulation$time:

Let's	verify
So	we	could	just	ask	for	the	15th	row	of	simulation$time:

simulation$time[15]					##	equiv:	simulation[15,	'time']

##	[1]	2

Let's	verify
So	we	could	just	ask	for	the	15th	row	of	simulation$time:

simulation$time[15]					##	equiv:	simulation[15,	'time']

##	[1]	2

Or	we	could	just	pass	the	entire	boolean	vector:

simulation$time[max(simulation$I)	==	simulation$I]

##	[1]	2

Let's	verify
So	we	could	just	ask	for	the	15th	row	of	simulation$time:

simulation$time[15]					##	equiv:	simulation[15,	'time']

##	[1]	2

Or	we	could	just	pass	the	entire	boolean	vector:

simulation$time[max(simulation$I)	==	simulation$I]

##	[1]	2

Or	better	yet,	just	stick	to	which.max()

Aside:	Boolean	vectors
Just	a	vector	of	TRUE	or	FALSE	(or	NA)	for	whatever	condition	you	specify.

Aside:	Boolean	vectors
Just	a	vector	of	TRUE	or	FALSE	(or	NA)	for	whatever	condition	you	specify.

Always	equal	to	the	length	of	the	vector	being	compared.

Aside:	Boolean	vectors
Just	a	vector	of	TRUE	or	FALSE	(or	NA)	for	whatever	condition	you	specify.

Always	equal	to	the	length	of	the	vector	being	compared.

What	does	this	return?	(Recall	what	seq()	does	from	our	last	lab)

seq(-5,	5,	1)	>=	0

Aside:	Boolean	vectors
Just	a	vector	of	TRUE	or	FALSE	(or	NA)	for	whatever	condition	you	specify.

Always	equal	to	the	length	of	the	vector	being	compared.

What	does	this	return?	(Recall	what	seq()	does	from	our	last	lab)

seq(-5,	5,	1)	>=	0

How	long	will	the	return	vector	be?
How	many	FALSE?
How	many	TRUE?

Aside:	Boolean	vectors
Just	a	vector	of	TRUE	or	FALSE	(or	NA)	for	whatever	condition	you	specify.

Always	equal	to	the	length	of	the	vector	being	compared.

What	does	this	return?	(Recall	what	seq()	does	from	our	last	lab)

seq(-5,	5,	1)	>=	0

How	long	will	the	return	vector	be?
How	many	FALSE?
How	many	TRUE?

print(seq(-5,	5,	1)	>=	0)

##		[1]	FALSE	FALSE	FALSE	FALSE	FALSE		TRUE		TRUE		TRUE		TRUE		TRUE		TRUE

Use	one	of	these	methods	to	find

the	time	of	maximum	infection	for

mumps	and	chickenpox*

*	Just	use	which.max().

Answers
simulation$time[which.max(simulation$I)]

##	[1]	2

sim_mumps$time[which.max(sim_mumps$I)]

##	[1]	4

sim_cpox$time[which.max(sim_cpox$I)]

##	[1]	3

NOTE:	My	answers	will	be	rounded.	Yours	should	not	be.

Find	the	peak	number	of	infected	for	each	of
the	three	epidemics

Answers
max(simulation$I)

##	[1]	644530

max(sim_mumps$I)

##	[1]	405947

max(sim_cpox$I)

##	[1]	537860

Question	4

SEIR	Models

Write	out	an	SEIR	model

With	parameter	a	for	the	rate	from	latent	to
infectious

Seriously,	write	it	out

Always	write/draw	models	before	coding	them

parms	<-	c(beta	=	.75,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Start	with	the	boilerplate	code	again

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Introduce	a	new	parameter	a	be	the	rate	from	latent	to	infectious.

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Introduce	a	new	parameter	a	be	the	rate	from	latent	to	infectious.
If	the	duration	of	the	latent	period	is	12	days,	what	is	the	rate	per	day?

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Introduce	a	new	parameter	a	be	the	rate	from	latent	to	infectious.
If	the	duration	of	the	latent	period	is	12	days,	what	is	the	rate	per	day?
1/12

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	10,	1/7)

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Introduce	a	new	parameter	a	be	the	rate	from	latent	to	infectious.
If	the	duration	of	the	latent	period	is	12	days,	what	is	the	rate	per	day?
1/12

Note,	we	want	the	rate	to	be	per	week	(since	our	time-steps	are	in
weeks)	so	*	7

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)	
dt	<-	seq(0,	25,	1/7)	

SIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Need	to	add	an	initial	value	for	our	new	compartment	E

Also,	intuitively,	delaying	infectiousness	will	delay	the	epidemic	so	we
should	expand	our	time

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	25,	1/7)

SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	I	+	R
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dI	<-	+	(beta	*	k	*	S	*	I)	/	N	-	r	*	I
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Change	the	function	name	to	reflect	our	new	model

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	25,	1/7)

SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I

								der	<-	c(dS,	dI,	dR)

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Add	E	into	our	total	population	count	N	and	then	put	in	the	compartment

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	25,	1/7)

SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I

								der	<-	c(dS,	dE,	dI,	dR)	

								return(list(der))
				})	
}

simulation	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																																func	=	SIR,	parms	=	parms))

Adjust	the	I	compartment	since	things	can	only	come	from	E	now.

Don't	forget	to	return	the	dE	compartment.

parms	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1)
inits	<-	c(S	=	999999,	E	=0,	I	=	1,	R	=	0)
dt	<-	seq(0,	25,	1/7)

SEIR	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)
								dR	<-	r	*	I

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}

sim_seir	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																														func	=	SEIR,	parms	=	parms))

Save	it	into	a	new	variable	and	make	sure	to	use	the	correct	model.

Plot	should	look	like	this
sim_seir	<-	as.data.frame(ode(y	=	inits,	times	=	dt,	
																														func	=	SEIR,	parms	=	parms))
matplot(x	=	sim_seir[,	1],	y	=	sim_seir[,	2:5],	type	=	"l",	
								lty	=	1,	xlab	=	"Time",	ylab	=	"People	(count)",	main	=	"SEIR	Model")
legend(x	=	"right",	legend	=	c('S',	'E',	'I',	'R'),	col	=	1:4,	lty	=	1)

With	a	neighbor,	add	births/deaths	to	your
SEIR	model

You	can	only	be	born	S	but	you	can	die	in	any
compartment*

*Keep	births	and	deaths	equal	assuming	an
annual	fertility	and	mortality	rate	of	.02

Your	code	should	look	similar
#	added	births	and	deaths	as	weekly	rates	(divide	by	52	weeks)
parms_bd	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.02/52,	d	=	.02/52)
#	Look	at	50	years
dt_bd	<-	seq(0,	52	*	50,	1/7)							

SEIR_bd	<-	function(t,	x,	parms){
				with(as.list(c(parms,	x)),	{

								N	<-	S	+	E	+	I	+	R	
								dS	<-	-	(beta	*	k	*	S	*	I)	/	N	+	(b	*	N)	-	(d	*	S)
								dE	<-	+	(beta	*	k	*	S	*	I)	/	N	-	(a	*	E)	-	(d	*	E)
								dI	<-	+	(a	*	E)	-	(r	*	I)	-	(d	*	I)
								dR	<-	r	*	I		-	(d	*	R)

								der	<-	c(dS,	dE,	dI,	dR)

								return(list(der))
				})	
}
simulation_bd	<-	as.data.frame(ode(y	=	inits,	times	=	dt_bd,	
																																			func	=	SEIR_bd,	parms	=	parms_bd))

Your	plot	should	look	like	this
matplot(x	=	simulation_bd[,	1],	y	=	simulation_bd[,	2:5],	type	=	"l",	
								lty	=	1,	xlab	=	"Time",	ylab	=	"People	(count)",	
								main	=	"SEIR	with	births/deaths")
legend(x	=	"right",	legend	=	c('S',	'E',	'I',	'R'),	col	=	1:4,	lty	=	1)

Challenge	questions

See	if	you	can	reparaterize	the	same	model,	but	in
time	steps	of	years.

Question	5

With	a	neighbor,	plot	only	infected	individuals

(and	only	for	t	>	5	years)

Hints

Hints

We	went	over	all	the	code	you	need	to	do	this

Hints

We	went	over	all	the	code	you	need	to	do	this

Boolean	vectors	are	your	friend

Hints

We	went	over	all	the	code	you	need	to	do	this

Boolean	vectors	are	your	friend

How	you	parameterized	time	matters

Your	plot	should	look	like	this
plot(x	=	simulation_bd$time[simulation_bd$time	>=	5	*	52],	
					y	=	simulation_bd$I[simulation_bd$time	>=	5	*	52],	
					type	=	"l",	lty	=	1,	xlab	=	"Time",	ylab	=	"Infections	(count)",	
					main	=	"Infections,	Open	SEIR")

Or	save	the	vector
y5_higher	<-	simulation_bd$time	>=	5	*	52
plot(x	=	simulation_bd$time[y5_higher],	
					y	=	simulation_bd$I[y5_higher],	
					type	=	"l",	lty	=	1,	xlab	=	"Time",	ylab	=	"Infections	(count)",	
					main	=	"Infections,	Open	SEIR")

Question	6

What	the	for-loop?

(The	magic	of	not	copying	and	pasting)

For-loop	basics
Suppose	you	want	to	sweep	through	many	values	of	a	parameter.

For-loop	basics
Suppose	you	want	to	sweep	through	many	values	of	a	parameter.

You	could	just	do	this:

parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.020/52,	d	=	.020/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.025/52,	d	=	.025/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.030/52,	d	=	.030/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.035/52,	d	=	.035/52)

For-loop	basics
Suppose	you	want	to	sweep	through	many	values	of	a	parameter.

You	could	just	do	this:

parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.020/52,	d	=	.020/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.025/52,	d	=	.025/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.030/52,	d	=	.030/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.035/52,	d	=	.035/52)

But	that's	error-prone,	tedious,	and	ugly.

For-loop	basics
Suppose	you	want	to	sweep	through	many	values	of	a	parameter.

You	could	just	do	this:

parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.020/52,	d	=	.020/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.025/52,	d	=	.025/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.030/52,	d	=	.030/52)
parms_bd1	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
														b	=	.035/52,	d	=	.035/52)

But	that's	error-prone,	tedious,	and	ugly.

So	we're	going	to	use	a	loop.

For-loop	basics

The	anatomy	of	a	for	loop

for	(placeholder_variable	in	list_of_values)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(placeholder_variable)
}

For-loop	basics

The	anatomy	of	a	for	loop

for	(placeholder_variable	in	list_of_values)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(placeholder_variable)
}

for()	declares	you	are	going	to	make	a	loop	in	the	{brackets}

For-loop	basics

The	anatomy	of	a	for	loop

for	(placeholder_variable	in	list_of_values)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(placeholder_variable)
}

for()	declares	you	are	going	to	make	a	loop	in	the	{brackets}
To	use	for()	we	need	to	give	it	something	to	loop	through	—
list_of_values

For-loop	basics

The	anatomy	of	a	for	loop

for	(placeholder_variable	in	list_of_values)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(placeholder_variable)
}

for()	declares	you	are	going	to	make	a	loop	in	the	{brackets}
To	use	for()	we	need	to	give	it	something	to	loop	through	—
list_of_values
We	also	need	to	give	it	a	placeholder_variable	we	will	use	to	refer	to	the
current	value	from	list_of_values	inside	of	the	{brackets}.

For-loop	basics

The	anatomy	of	a	for	loop

for	(placeholder_variable	in	list_of_values)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(placeholder_variable)
}

for()	declares	you	are	going	to	make	a	loop	in	the	{brackets}
To	use	for()	we	need	to	give	it	something	to	loop	through	—
list_of_values
We	also	need	to	give	it	a	placeholder_variable	we	will	use	to	refer	to	the
current	value	from	list_of_values	inside	of	the	{brackets}.
Finally,	we	do	something	to	that	placeholder_variable	and	then	move	on	to
the	next	value

For-loop	basics

The	anatomy	of	a	for	loop

sentence	<-	c("The",	"magic",	"of",	"for",	"loops")
for	(word	in	sentence)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(word)
}

##	[1]	"The"
##	[1]	"magic"
##	[1]	"of"
##	[1]	"for"
##	[1]	"loops"

For-loop	basics

The	anatomy	of	a	for	loop

sentence	<-	c("The",	"magic",	"of",	"for",	"loops")
for	(word	in	sentence)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(word)
}

##	[1]	"The"
##	[1]	"magic"
##	[1]	"of"
##	[1]	"for"
##	[1]	"loops"

So	the	first	time	this	loop	ran,	word	had	the	value	of	"The"

For-loop	basics

The	anatomy	of	a	for	loop

sentence	<-	c("The",	"magic",	"of",	"for",	"loops")
for	(word	in	sentence)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(word)
}

##	[1]	"The"
##	[1]	"magic"
##	[1]	"of"
##	[1]	"for"
##	[1]	"loops"

So	the	first	time	this	loop	ran,	word	had	the	value	of	"The"

The	second	time,	word	had	the	value	of	"magic"	and	so	on.

For-loop	basics

Sidenote,	you	can	also	loop	by	index

sentence	<-	c("The",	"magic",	"of",	"for",	"loops")
for	(idx	in	1:5)	{
				##	Do	something	--	hopefully	more	useful	than	printing
				print(sentence[idx])
}

##	[1]	"The"
##	[1]	"magic"
##	[1]	"of"
##	[1]	"for"
##	[1]	"loops"

Very	common	because	it	is	more	general

Useful	when	you	only	care	about	the	position	of	an	element	(and	not	the
element	itself).

For-loop	basics

Appending	data	with	loops

multiplier	<-	1:5
holder	<-	NULL
for	(x	in	multiplier)	{
				results	<-	1:10	*	x
				holder	<-	cbind(holder,	results)
}

What	is	this	code	doing?

For-loop	basics

Appending	data	with	loops

multiplier	<-	1:5
holder	<-	NULL
for	(x	in	multiplier)	{
				results	<-	1:10	*	x
				holder	<-	cbind(holder,	results)
}

What	is	this	code	doing?

multiplier	is	just	a	sequence	1,	2,	3,	4,	5

For-loop	basics

Appending	data	with	loops

multiplier	<-	1:5
holder	<-	NULL
for	(x	in	multiplier)	{
				results	<-	1:10	*	x
				holder	<-	cbind(holder,	results)
}

What	is	this	code	doing?

multiplier	is	just	a	sequence	1,	2,	3,	4,	5

Variables	inside	the	{brackets}	of	the	for	loop	get	overwritten	with	every
loop,	so	we	create	an	empty	(NULL)	variable	outside	of	the	for	loop	to	store
results.

For-loop	basics

Appending	data	with	loops

multiplier	<-	1:5
holder	<-	NULL
for	(x	in	multiplier)	{
				results	<-	1:10	*	x
					holder	<-	cbind(holder,	results)
}

What	is	this	code	doing?

multiplier	is	just	a	sequence	1,	2,	3,	4,	5

Variables	inside	the	{brackets}	of	the	for	loop	get	overwritten	with	every
loop,	so	we	create	an	empty	(NULL)	variable	outside	of	the	for	loop	to	store
results.

Then	we	column	bind	our	inside-the-loop	results	to	the	outside-the-loop
variable	we	made

For-loop	basics

Appending	data	with	loops

print(holder)

##							results	results	results	results	results
##		[1,]							1							2							3							4							5
##		[2,]							2							4							6							8						10
##		[3,]							3							6							9						12						15
##		[4,]							4							8						12						16						20
##		[5,]							5						10						15						20						25
##		[6,]							6						12						18						24						30
##		[7,]							7						14						21						28						35
##		[8,]							8						16						24						32						40
##		[9,]							9						18						27						36						45
##	[10,]						10						20						30						40						50

Back	to	Question	6

With	a	neighbor,	make	a	vector	containing	5	equally
spaced	values	of	the	birth/death	parameter	between

.013	and	.025.*

*See	help(seq)	for	options

Back	to	Question	6

Now	make	a	for	loop	that	runs	ode	on	each	value	of
this	vector	and	use	the	"appending	trick"	to	save	only

the	infectious	column	from	each	run	into	a	new
variable*

*Change	your	time	scale	to	25	years	instead
of	50

Back	to	Question	6

Now	plot	your	five	infectious	columns

for	time	>=	5	years

Changing	birth/death	rates
bd_rates	<-	seq(from	=	.013,	to	=	.025,	length.out	=	5)
dt_bd	<-	seq(0,	25	*	52,	1/7)
holder	<-	NULL
for	(bd	in	bd_rates)	{
				parms_bd	<-	c(beta	=	.75,	a	=	1/12	*	7,	k	=	12	,	r	=	1,	
																		b	=	bd/52,	d	=	bd/52)
				simulation_bd	<-	as.data.frame(ode(y	=	inits,	times	=	dt_bd,	
																																							func	=	SEIR_bd,	parms	=	parms_bd))
				holder	<-	cbind(holder,	simulation_bd$I)
}

Nothing	on	this	slide	is	new.	We're	just	piecing	together	different	things	we've
done	before.	Review	it	slowly	if	it	doesn't	make	sense	to	you	yet.

Changing	birth/death	rates
t5_more	<-	simulation_bd$time	>=	52	*	5
matplot(simulation_bd$time[t5_more],	holder[t5_more,],	type	=	'l',	
								lty	=	1,	xlab	=	"Time	(weeks)",	ylab	=	"Infections	(count)",	
								main	=	"Changing	birth/deaths")
legend(x	=	"topleft",	legend	=	bd_rates,	col	=	1:5,	lty	=	1)

That's	it.

Thanks

